
Electronic engineer

Oswaldo Andrés Ordóñez Bolaños

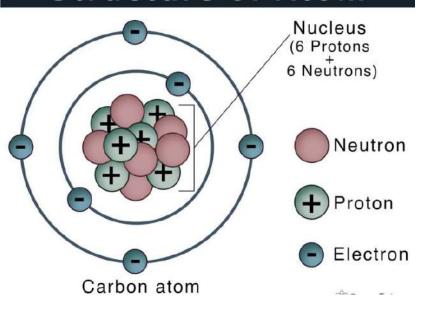
Objetives Deep understanding Big four current

Big Four

Voltage – Current – Resistance – Power

Matter:

- Occupies space
- Has Weight (mass)

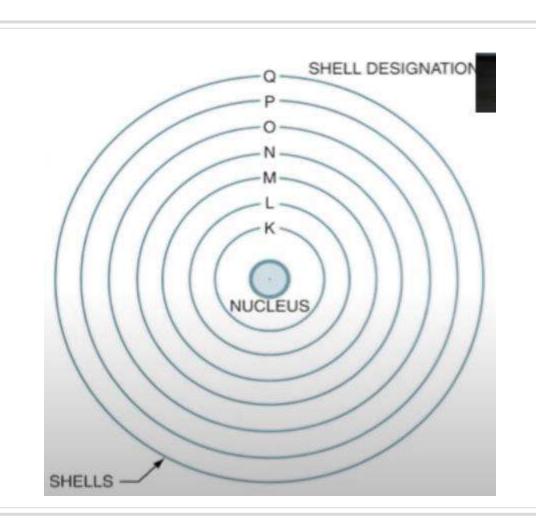

Elements:

Basic building block of nature

Parts of an atom:

- Nucleus Located at center of atom
- Protons : Positively charged particles inside nucleus
- Neutrons: Uncharged particles inside nucleus
- Electrons: Negatively charged particles that orbit the nucleus
- Shells: orbit that electrons follow.
- Valence Shell: the outermost Shell.

Structure of Atom



Atomic number:

The number of protons in the nucleus of the atom.

Atomic weight:

The mass of an atom. Total number of protons and neutrons in the nucleus

Why?

66

- Identify the properties of materials that we used in electronics.
- Where voltage comes from.

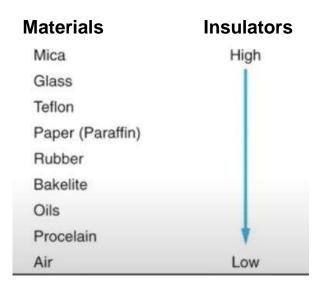
Electric Conductors

Insulators

Materials that readily accept the Flow of electrons or electricity.

3 valence shell.

Prevent the Flow of electricity. 5 valence shell.



Resistivity and Temperature Coefficient at 20 C

Material	Resistivity ρ (ohm m)		Temperature coefficient α per degree C	Conductivity σ x $10^7/\Omega m$
Silver	1.59	x10 ⁻⁸	.0038	6.29
Copper	1.68	x10 ⁻⁸	.00386	5.95
Copper, annealed	1.72	x10 ⁻⁸	.00393	5.81
Aluminum	2.65	x10 ⁻⁸	.00429	3.77
Tungsten	5.6	x10 ⁻⁸	.0045	1.79
Iron	9.71	x10 ⁻⁸	.00651	1.03
Platinum	10.6	x10 ⁻⁸	.003927	0.943

Semi conductors

4 valence Shell
Material whose conductivity lie between
the conductor and insulator

Where Voltage comes from

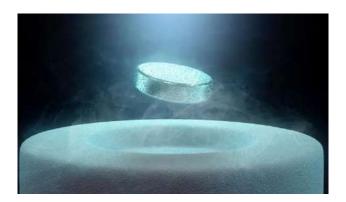
Negative ION

Positive IOT

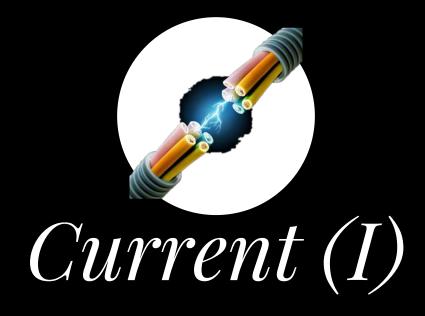
A negatively charged atom

Neutral natural state

A positively charged atom


Generate electricity

Apply energy to matter.


Ionization
Process of gaining or losing
electrons

Super conductor

Low temperature

Meissner effect

Movement of electrons from negatively charged atoms to positively charged atoms (disordered movement).

Coulomb

$$C = 6.24x10^{18}$$

Ampere

One coulomb moving past a single point in one second.

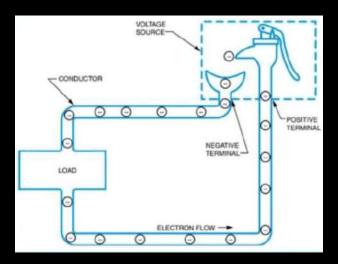
Represent by A.

Force that moves the electrons in the circuit.

the pressure or pum that moves electrons

Potential

 \blacksquare The ability of the source to perform electrical work


Difference of potential

Causes electrons to move or Flow in a circuit. Referred to as electromotive force (emf) or voltage.

Opposition to the flow of electrons.

Mesure in Ohms - George Simon Ohm

In Summary

Conductors

- Low resistance to current Flow
- Many free electrons.

Insulators

- High resistance to current Flow
- Few free electrons.

Matter

Elements

Atoms

- Nucleus (place)
- Protons
- Neutrons
- Electrons

Atomic number (+)

Atomic weight (+,n)

Shell

- Valence shell

In Summary

Ionization (take out)

Current

Coulomb

Ampere

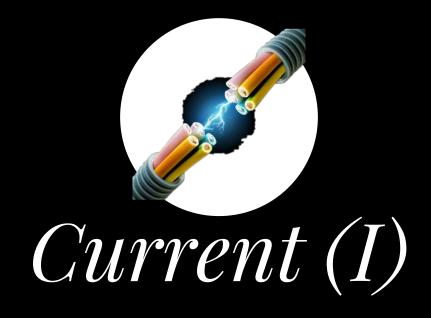
Electric current

Potential or electromotive force

Matter

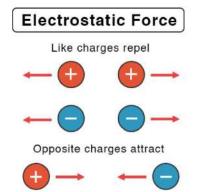
Elements

Atoms


- Nucleus (place)
- Protons
- Neutrons
- Electrons

Atomic number (+)

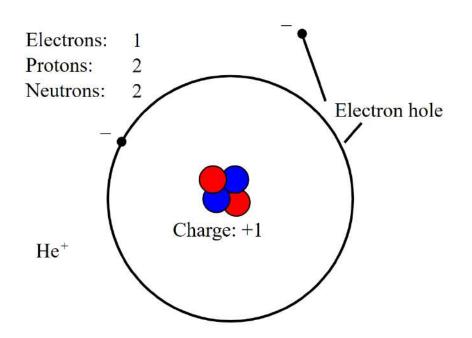
Atomic weight (+,n)

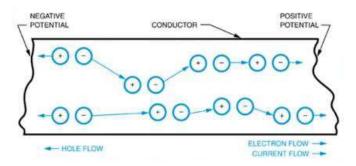

Shell

- Valence shell

Movement of electrons from negatively charged atoms to positively charged atoms (disordered movement).

Law of electrostatic charges


Current equation


The relationship between amperes and coulombs per second can be expressed as:

$$I = \frac{Q}{t} = \frac{dQ}{dt}$$

- I = current measured in amperes
- Q = quantity of electrical charge in coulombs
- t = time in seconds.

Hole

Force that moves the electrons in the circuit.

the pressure or pum that moves electrons

Voltage source

- Supplies electrons from one end of the conductor.
- Removes electrons from the other end of the conductor.

Friction

- Van de Graff generator - Torments

Magnetism (Faray law)

 Powered by steam from nuclear power or coal, water, wind, or gasoline or diesel.

- Produced using generator.

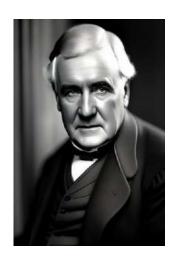
Chemicals

- Cell
- Copper / Zinc
- Many cells can be connected to form a battery

Light: Photovoltaic cell

Heat: Termocuple

Pressure: Piezoelectric effect.

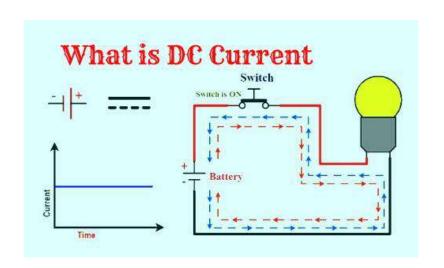


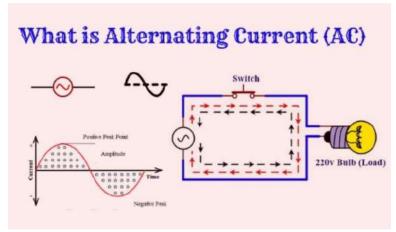
Direct current Alternating current

Voltage Source

Direct current

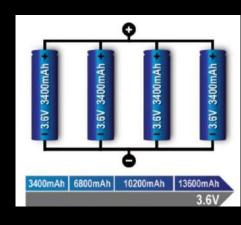
Electrons Flow in only one direction.


Alternating current


Electrons Flow in one direction, then in the opposite direction.

Voltage Source

DC AC


Chemicals source

It generates electricity through chemical reactions that occur within the source.

Basis of Difference	Cell	Battery		
Definition	A cell is an active circuit element that converts chemical energy to produce electrical energy.	A battery is a collection of two or more cells connected together in a single unit and produces electrical energy by performing a chemical reaction.		
Circuit symbol	→ ₊			
Types	Cells are of two types – primary cell and secondary cell.	Types of battery are: primary battery and secondary battery.		
Service time period	Cell supplies electrical power for a short period of time.	Battery supplies electrical power to the circuit for a long duration.		
Physical size	The size of a cell is small.	Battery is relatively larger in size.		
Weight	Cell is light in weight.	Battery is heavy.		
Cost	The cost of a cell is quite low.	Battery is relatively costlier.		
Energy supplied	Cell can supply only small amount of energy for short time.	Battery can provide more amount of energy than a cell, because it consists of many cells in a single unit.		
Examples	Dry cell, Daniel cell, electrolytic cell, fuel cell, galvanic cell, Leclanche cell, etc.	Li-lon battery, lead-acid battery, Ni-Cd battery, etc.		
Application	Cells are generally used in portable devices like clock, torch, toys, remote controls, etc.	Batteries are used in devices that demand more power to operate such as lamps, inverters, automobiles, emergency lights, etc.		

Primary cells Cannot be recharged Alkaline Lithium Secondary cells Can be recharged Nickel-cadmium

Opposition to the flow of electrons.

Mesure in Ohms – George Simon Ohm

Conductance

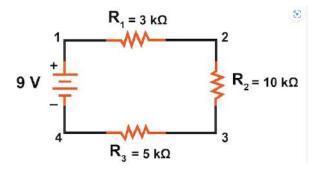
The ability of a material to pass electrons

$$R = \frac{1}{G} \quad or \quad G = \frac{1}{R}$$

Resistors

Fixed Carbon

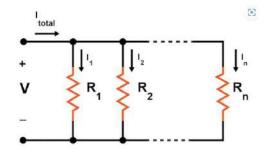
Fixed Wirewound

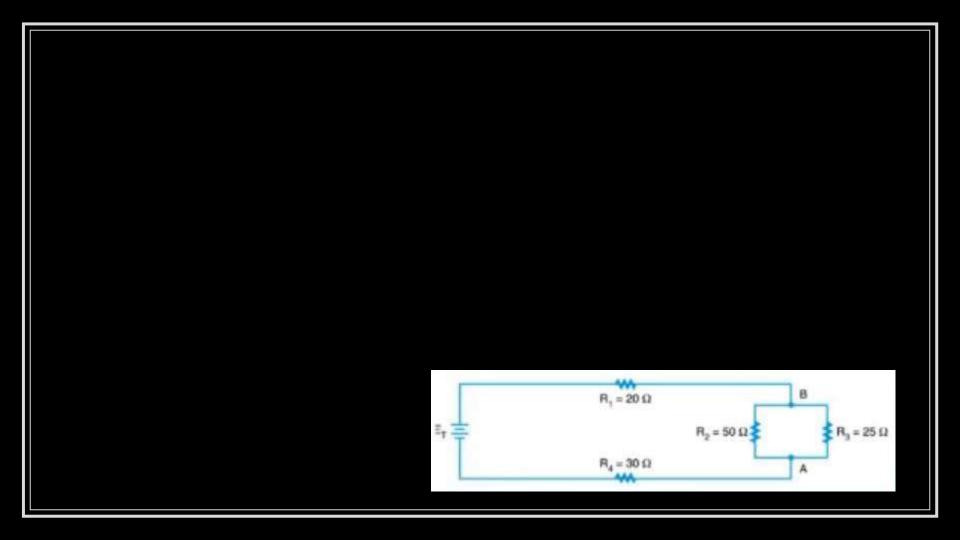


Variable Carbon

Circuit

Serie

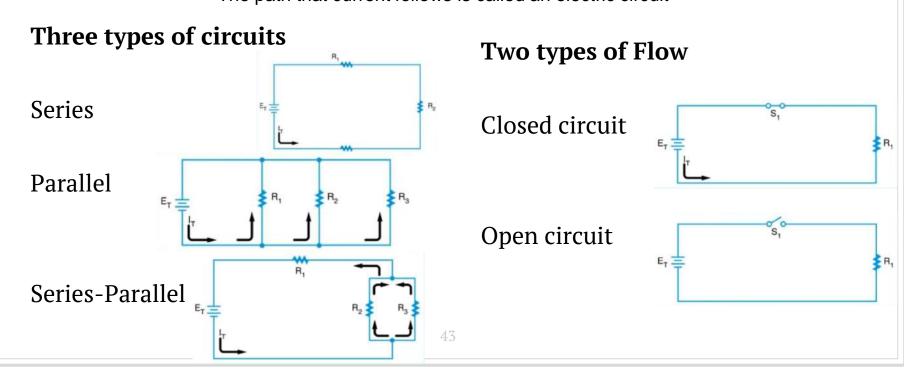

$$R_{\parallel} = R_1 + R_2 + R_3 + R_n$$



Parallel

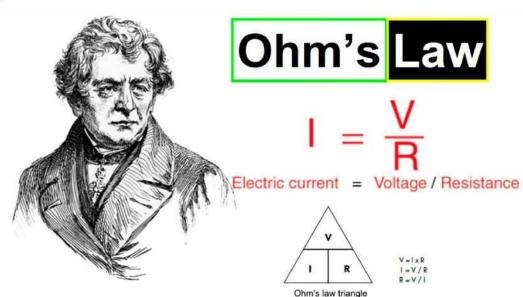
$$R_t = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_n}}$$

$$R_t = \frac{R_1 * R_2}{R_1 + R_2}$$



Ohms law

Electric circuit


A voltage source – a load – a conductor. The path that current follows is called an electric circuit

Current Flow can be varied by

V = I * R

Ohms law

Serie

 The same current Flow throughout the circuit.

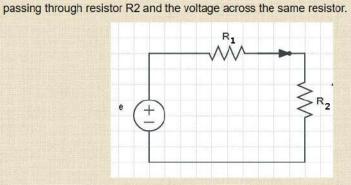
$$I_T = I_{R1} = I_{R2} = I_{R3}$$

 The total voltage is equal to the voltage drop across individual load.

$$V_T = V_{R1} + V_{R2} + V_{R3}$$

Parallel

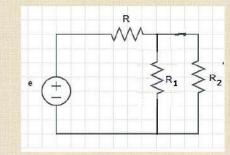
- The same voltaje is applie to each Brand in the circuit


$$V_T = V_{R1} = V_{R2} = V_{R3}$$

 The total current is equal to the sum of individual Branch currents.

$$I_T = I_{R1} + I_{R2} + I_{R3}$$

Example 2


In the circuit below resistors R1 and R2 are in series and have resistances of 5 Ω and 10 Ω , respectively. The voltage across resistor R1 is equal to 4 V. Find the current

Example 3

In the circuit below resistors R1 and R2 are in parallel and have resistances of 8 Ω and

4 Ω , respectively. The current passing through R1 is 0.2 A. Find the voltage across resistor R2 and the current passing through the same resistor.

Many thanks

Questions?

Oswaldo Andrés Ordóñez Bolaños